Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Clin Virol ; 165: 105500, 2023 08.
Article in English | MEDLINE | ID: covidwho-20231292

ABSTRACT

The rapidity with which SARS-CoV-2 XBB variants rose to predominance has been alarming. We used a large cohort of patients diagnosed with Omicron infections between September 2022 and mid-February 2023 to evaluate the likelihood of admission or need for supplemental oxygen in patients infected with XBB variants. Our data showed no significant association between XBB or XBB.1.5 infections and admissions. Older age groups, lack of vaccination, immunosuppression and underlying heart, kidney, and lung disease showed significant associations with hospitalization.


Subject(s)
COVID-19 , Humans , Aged , SARS-CoV-2/genetics , Cluster Analysis , Hospitalization
2.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2303598

ABSTRACT

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Uncertainty , Disease Outbreaks/prevention & control , Public Health , Pandemics/prevention & control
3.
Open Forum Infect Dis ; 10(3): ofad096, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2261990

ABSTRACT

Background: Declines in outpatient antibiotic prescribing were reported during the beginning of the coronavirus disease 2019 (COVID-19) pandemic in the United States; however, the overall impact of COVID-19 cases on antibiotic prescribing remains unclear. Methods: This was an ecological study using random-effects panel regression of monthly reported COVID-19 county case and antibiotic prescription data, controlling for seasonality, urbanicity, health care access, nonpharmaceutical interventions (NPIs), and sociodemographic factors. Results: Antibiotic prescribing fell 26.8% in 2020 compared with prior years. Each 1% increase in county-level monthly COVID-19 cases was associated with a 0.009% (95% CI, 0.007% to 0.012%; P < .01) increase in prescriptions per 100 000 population dispensed to all ages and a 0.012% (95% CI, -0.017% to -0.008%; P < .01) decrease in prescriptions per 100 000 children. Counties with schools open for in-person instruction were associated with a 0.044% (95% CI, 0.024% to 0.065%; P < .01) increase in prescriptions per 100 000 children compared with counties that closed schools. Internal movement restrictions and requiring facemasks were also associated with lower prescribing among children. Conclusions: The positive association of COVID-19 cases with prescribing for all ages and the negative association for children indicate that increases in prescribing occurred primarily among adults. The rarity of bacterial coinfection in COVID-19 patients suggests that a fraction of these prescriptions may have been inappropriate. Facemasks and school closures were correlated with reductions in prescribing among children, possibly due to the prevention of other upper respiratory infections. The strongest predictors of prescribing were prior years' prescribing trends, suggesting the possibility that behavioral norms are an important driver of prescribing practices.

4.
Clin Infect Dis ; 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2272936

ABSTRACT

BACKGROUND: The variant of concern, Omicron, has become the sole circulating SARS-CoV-2 variant for the past several months. Omicron subvariants BA.1, BA.2, BA.3, BA.4, and BA.5 evolved over the time, with BA.1 causing the largest wave of infections globally in December 2021- January 2022. In this study, we compare the clinical outcomes in patients infected with different Omicron subvariants and compare the relative viral loads, and recovery of infectious virus from upper respiratory specimens. METHODS: SARS-CoV-2 positive remnant clinical specimens, diagnosed at the Johns Hopkins Microbiology Laboratory between December 2021 and July 2022, were used for whole genome sequencing. The clinical outcomes of infections with Omicron subvariants were compared to infections with BA.1. Cycle threshold values (Ct) and the recovery of infectious virus on VeroTMPRSS2 cell line from clinical specimens were compared. RESULTS: The BA.1 was associated with the largest increase in SARS-CoV-2 positivity rate and COVID-19 related hospitalizations at the Johns Hopkins system. After a peak in January, cases fell in the spring, but the emergence of BA.2.12.1 followed by BA.5 in May 2022 led to an increase in case positivity and admissions. BA.1 infections had a lower mean Ct when compared to other Omicron subvariants. BA.5 samples had a greater likelihood of having infectious virus at Ct values less than 20. CONCLUSIONS: Omicron subvariants continue to be associated with a relatively high rate of PCR positivity and hospital admissions. The BA.5 infections are more while BA.2 infections are less likely to have infectious virus, suggesting potential differences in infectibility during the Omicron waves.

5.
Sci Rep ; 12(1): 16729, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-2050521

ABSTRACT

Mounting evidence suggests the primary mode of SARS-CoV-2 transmission is aerosolized transmission from close contact with infected individuals. While transmission is a direct result of human encounters, falling humidity may enhance aerosolized transmission risks similar to other respiratory viruses (e.g., influenza). Using Google COVID-19 Community Mobility Reports, we assessed the relative effects of absolute humidity and changes in individual movement patterns on daily cases while accounting for regional differences in climatological regimes. Our results indicate that increasing humidity was associated with declining cases in the spring and summer of 2020, while decreasing humidity and increase in residential mobility during winter months likely caused increases in COVID-19 cases. The effects of humidity were generally greater in regions with lower humidity levels. Given the possibility that COVID-19 will be endemic, understanding the behavioral and environmental drivers of COVID-19 seasonality in the United States will be paramount as policymakers, healthcare systems, and researchers forecast and plan accordingly.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Humidity , SARS-CoV-2 , Seasons , Temperature , United States/epidemiology
6.
JCI Insight ; 7(20)2022 10 24.
Article in English | MEDLINE | ID: covidwho-2020639

ABSTRACT

BACKGROUNDIncreased SARS-CoV-2 reinfection rates have been reported recently, with some locations basing reinfection on a second positive PCR test at least 90 days after initial infection. In this study, we used Johns Hopkins SARS-CoV-2 genomic surveillance data to evaluate the frequency of sequencing-validated, confirmed, and inferred reinfections between March 2020 and July 2022.METHODSPatients who had 2 or more positive SARS-CoV-2 tests in our system, with samples sequenced as a part of our surveillance efforts, were identified as the cohort for our study. SARS-CoV-2 genomes of patients' initial and later samples were compared.RESULTSA total of 755 patients (920 samples) had a positive test at least 90 days after the initial test, with a median time between tests of 377 days. Sequencing was attempted on 231 samples and was successful in 127. Rates of successful sequencing spiked during the Omicron surge; there was a higher median number of days from initial infection in these cases compared with those with failed sequences. A total of 122 (98%) patients showed evidence of reinfection; 45 of these patients had sequence-validated reinfection and 77 had inferred reinfections (later sequencing showed a clade that was not circulating when the patient was initially infected). Of the 45 patients with sequence-validated reinfections, 43 (96%) had reinfections that were caused by the Omicron variant, 41 (91%) were symptomatic, 32 (71%) were vaccinated prior to the second infection, 6 (13%) were immunosuppressed, and only 2 (4%) were hospitalized.CONCLUSIONSequence-validated reinfections increased with the Omicron surge but were generally associated with mild infections.FUNDINGFunding was provided by the Johns Hopkins Center of Excellence in Influenza Research and Surveillance (HHSN272201400007C), CDC (75D30121C11061), Johns Hopkins University President's Fund Research Response, Johns Hopkins Department of Pathology, and the Maryland Department of Health.


Subject(s)
COVID-19 , Reinfection , Humans , SARS-CoV-2/genetics , Genome, Viral
7.
NPJ Digit Med ; 5(1): 94, 2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-1937454

ABSTRACT

Demand has outstripped healthcare supply during the coronavirus disease 2019 (COVID-19) pandemic. Emergency departments (EDs) are tasked with distinguishing patients who require hospital resources from those who may be safely discharged to the community. The novelty and high variability of COVID-19 have made these determinations challenging. In this study, we developed, implemented and evaluated an electronic health record (EHR) embedded clinical decision support (CDS) system that leverages machine learning (ML) to estimate short-term risk for clinical deterioration in patients with or under investigation for COVID-19. The system translates model-generated risk for critical care needs within 24 h and inpatient care needs within 72 h into rapidly interpretable COVID-19 Deterioration Risk Levels made viewable within ED clinician workflow. ML models were derived in a retrospective cohort of 21,452 ED patients who visited one of five ED study sites and were prospectively validated in 15,670 ED visits that occurred before (n = 4322) or after (n = 11,348) CDS implementation; model performance and numerous patient-oriented outcomes including in-hospital mortality were measured across study periods. Incidence of critical care needs within 24 h and inpatient care needs within 72 h were 10.7% and 22.5%, respectively and were similar across study periods. ML model performance was excellent under all conditions, with AUC ranging from 0.85 to 0.91 for prediction of critical care needs and 0.80-0.90 for inpatient care needs. Total mortality was unchanged across study periods but was reduced among high-risk patients after CDS implementation.

8.
J Clin Microbiol ; 60(7): e0052622, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1891733

ABSTRACT

Next-generation sequencing (NGS) workflows applied to bronchoalveolar lavage (BAL) fluid specimens could enhance the detection of respiratory pathogens, although optimal approaches are not defined. This study evaluated the performance of the Respiratory Pathogen ID/AMR (RPIP) kit (Illumina, Inc.) with automated Explify bioinformatic analysis (IDbyDNA, Inc.), a targeted NGS workflow enriching specific pathogen sequences and antimicrobial resistance (AMR) markers, and a complementary untargeted metagenomic workflow with in-house bioinformatic analysis. Compared to a composite clinical standard consisting of provider-ordered microbiology testing, chart review, and orthogonal testing, both workflows demonstrated similar performances. The overall agreement for the RPIP targeted workflow was 65.6% (95% confidence interval, 59.2 to 71.5%), with a positive percent agreement (PPA) of 45.9% (36.8 to 55.2%) and a negative percent agreement (NPA) of 85.7% (78.1 to 91.5%). The overall accuracy for the metagenomic workflow was 67.1% (60.9 to 72.9%), with a PPA of 56.6% (47.3 to 65.5%) and an NPA of 77.2% (68.9 to 84.1%). The approaches revealed pathogens undetected by provider-ordered testing (Ureaplasma parvum, Tropheryma whipplei, severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], rhinovirus, and cytomegalovirus [CMV]), although not all pathogens detected by provider-ordered testing were identified by the NGS workflows. The RPIP targeted workflow required more time and reagents for library preparation but streamlined bioinformatic analysis, whereas the metagenomic assay was less demanding technically but required complex bioinformatic analysis. The results from both workflows were interpreted utilizing standardized criteria, which is necessary to avoid reporting nonpathogenic organisms. The RPIP targeted workflow identified AMR markers associated with phenotypic resistance in some bacteria but incorrectly identified blaOXA genes in Pseudomonas aeruginosa as being associated with carbapenem resistance. These workflows could serve as adjunctive testing with, but not as a replacement for, standard microbiology techniques.


Subject(s)
COVID-19 , Communicable Diseases , Bronchoalveolar Lavage Fluid/microbiology , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenomics , SARS-CoV-2 , Workflow
9.
Antimicrob Steward Healthc Epidemiol ; 1(1): e28, 2021.
Article in English | MEDLINE | ID: covidwho-1860181

ABSTRACT

Artificial intelligence (AI) refers to the performance of tasks by machines ordinarily associated with human intelligence. Machine learning (ML) is a subtype of AI; it refers to the ability of computers to draw conclusions (ie, learn) from data without being directly programmed. ML builds from traditional statistical methods and has drawn significant interest in healthcare epidemiology due to its potential for improving disease prediction and patient care. This review provides an overview of ML in healthcare epidemiology and practical examples of ML tools used to support healthcare decision making at 4 stages of hospital-based care: triage, diagnosis, treatment, and discharge. Examples include model-building efforts to assist emergency department triage, predicting time before septic shock onset, detecting community-acquired pneumonia, and classifying COVID-19 disposition risk level. Increasing availability and quality of electronic health record (EHR) data as well as computing power provides opportunities for ML to increase patient safety, improve the efficiency of clinical management, and reduce healthcare costs.

10.
Front Cell Infect Microbiol ; 12: 809407, 2022.
Article in English | MEDLINE | ID: covidwho-1817934

ABSTRACT

Large-scale SARS-CoV-2 molecular testing coupled with whole genome sequencing in the diagnostic laboratories is instrumental for real-time genomic surveillance. The extensive genomic, laboratory, and clinical data provide a valuable resource for understanding cases of reinfection versus prolonged RNA shedding and protracted infections. In this study, data from a total of 22,292 clinical specimens, positive by SARS-CoV-2 molecular diagnosis at Johns Hopkins clinical virology laboratory between March 11th 2020 to September 23rd 2021, were used to identify patients with two or more positive results. A total of 3,650 samples collected from 1,529 patients who had between 2 and 20 positive results were identified in a time frame that extended up to 403 days from the first positive. Cycle threshold values (Ct) were available for 1,622 samples, the median of which was over 30 by 11 days after the first positive. Extended recovery of infectious virus on cell culture was notable for up to 70 days after the first positive in immunocompromised patients. Whole genome sequencing data generated as a part of our SARS-CoV-2 genomic surveillance was available for 1,027 samples from patients that had multiple positive tests. Positive samples collected more than 10 days after initial positive with high quality sequences (coverage >90% and mean depth >100), were more likely to be from unvaccinated, or immunosuppressed patients. Reinfections with viral variants of concern were found in 3 patients more than 130 days from prior infections with a different viral clade. In 75 patients that had 2 or more high quality sequences, the acquisition of more substitutions or deletions was associated with lack of vaccination and longer time between the recovered viruses. Our study highlights the value of integrating genomic, laboratory, and clinical data for understanding the biology of SARS-CoV-2 as well as for setting a precedent for future epidemics and pandemics.


Subject(s)
COVID-19 , Reinfection , COVID-19/diagnosis , Genome, Viral/genetics , Genomics , Humans , Molecular Diagnostic Techniques , RNA, Viral/genetics , SARS-CoV-2/genetics
11.
EBioMedicine ; 79: 104008, 2022 May.
Article in English | MEDLINE | ID: covidwho-1796982

ABSTRACT

BACKGROUND: The increase in SARS-CoV-2 infections in December 2021 was driven primarily by the Omicron variant, which largely displaced the Delta over a three-week span. Outcomes from infection with Omicron remain uncertain. We evaluated whether clinical outcomes and viral loads differed between Delta and Omicron infections during the period when both variants were co-circulating. METHODS: In this retrospective observational cohort study, remnant clinical specimens, positive for SARS-CoV-2 after standard of care testing at the Johns Hopkins Microbiology Laboratory, between the last week of November and the end of December 2021, were used for whole viral genome sequencing. Cycle threshold values (Ct) for viral RNA, the presence of infectious virus, and levels of respiratory IgG were measured, and clinical outcomes were obtained. Differences in each measure were compared between variants stratified by vaccination status. FINDINGS: The Omicron variant displaced Delta during the study period and constituted 95% of the circulating lineages by the end of December 2021. Patients with Omicron infections (N = 1,119) were more likely to be vaccinated compared to patients with Delta (N = 908), but were less likely to be admitted (0.33 CI 0.21-0.52), require ICU level care (0.38 CI 0.17-0.87), or succumb to infection (0.26 CI 0.06-1.02) regardless of vaccination status. There was no statistically significant difference in Ct values based on the lineage regardless of the vaccination status. Recovery of infectious virus in cell culture was reduced in boosted patients compared to fully vaccinated without a booster and unvaccinated when infected with the Delta lineage. However, in patients with Omicron infections, recovery of infectious virus was not affected by vaccination. INTERPRETATION: Compared to Delta, Omicron was more likely to cause breakthrough infections of vaccinated individuals, yet admissions were less frequent. Admitted patients might develop severe disease comparable to Delta. Efforts for reducing Omicron transmission are required as, though the admission risk might be lower, the increased numbers of infections cause large numbers of hospitalizations. FUNDING: NIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061, and The Modeling Infectious Diseases in Healthcare Network (MInD) under awards U01CK000589.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Hospitalization , Hospitals , Humans , Retrospective Studies , SARS-CoV-2/genetics , Viral Load
12.
Front Public Health ; 10: 853757, 2022.
Article in English | MEDLINE | ID: covidwho-1776076

ABSTRACT

Background: The rising prevalence of multi-drug resistant organisms (MDROs), such as Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococci (VRE), and Carbapenem-resistant Enterobacteriaceae (CRE), is an increasing concern in healthcare settings. Materials and Methods: Leveraging data from electronic healthcare records and a unique MDRO universal screening program, we developed a data-driven modeling framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU) admission, and identified the associated socio-demographic and clinical factors using logistic regression (LR), random forest (RF), and XGBoost algorithms. We performed threshold optimization for converting predicted probabilities into binary predictions and identified the cut-off maximizing the sum of sensitivity and specificity. Results: Four thousand six hundred seventy ICU admissions (3,958 patients) were examined. MDRO colonization rate was 17.59% (13.03% VRE, 1.45% CRE, and 7.47% MRSA). Our study achieved the following sensitivity and specificity values with the best performing models, respectively: 80% and 66% for VRE with LR, 73% and 77% for CRE with XGBoost, 76% and 59% for MRSA with RF, and 82% and 83% for MDRO (i.e., VRE or CRE or MRSA) with RF. Further, we identified several predictors of MDRO colonization, including long-term care facility stay, current diagnosis of skin/subcutaneous tissue or infectious/parasitic disease, and recent isolation precaution procedures before ICU admission. Conclusion: Our data-driven modeling framework can be used as a clinical decision support tool for timely predictions, characterization and identification of high-risk patients, and selective and timely use of infection control measures in ICUs.


Subject(s)
Drug Resistance, Multiple, Bacterial , Intensive Care Units , Methicillin-Resistant Staphylococcus aureus , Vancomycin-Resistant Enterococci , Electronic Health Records , Humans , Models, Theoretical , Patient Admission
13.
Clin Infect Dis ; 75(1): e715-e725, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1722267

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) B.1.617.2 (Delta) displaced B.1.1.7 (Alpha) and is associated with increases in coronavirus disease 2019 (COVID-19) cases, greater transmissibility, and higher viral RNA loads, but data are lacking regarding the infectious virus load and antiviral antibody levels in the nasal tract. METHODS: Whole genome sequencing, cycle threshold (Ct) values, infectious virus, anti-SARS-CoV-2 immunoglobulin G (IgG) levels, and clinical chart reviews were combined to characterize SARS-CoV-2 lineages circulating in the National Capital Region between January and September 2021 and differentiate infections in vaccinated and unvaccinated individuals by the Delta, Alpha, and B.1.2 (the predominant lineage prior to Alpha) variants. RESULTS: The Delta variant displaced the Alpha variant to constitute 99% of the circulating lineages in the National Capital Region by August 2021. In Delta infections, 28.5% were breakthrough cases in fully vaccinated individuals compared to 4% in the Alpha infected cohort. Breakthrough infections in both cohorts were associated with comorbidities, but only Delta infections were associated with a significant increase in the median days after vaccination. More than 74% of Delta samples had infectious virus compared to <30% from the Alpha cohort. The recovery of infectious virus with both variants was associated with low levels of local SARS-CoV-2 IgG. CONCLUSIONS: Infection with the Delta variant was associated with more frequent recovery of infectious virus in vaccinated and unvaccinated individuals compared to the Alpha variant but was not associated with an increase in disease severity in fully vaccinated individuals. Infectious virus was correlated with the presence of low amounts of antiviral IgG in the nasal specimens.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antiviral Agents , Humans , Immunoglobulin G , SARS-CoV-2/genetics
14.
Clin Infect Dis ; 74(9): 1675-1677, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1703785

ABSTRACT

We assessed temporal changes in the household secondary attack rate of severe acute respiratory syndrome coronavirus 2 and identified risk factors for transmission in vulnerable Latino households of Baltimore, Maryland. The household secondary attack rate was 45.8%, and it appeared to increase as the alpha variant spread, highlighting the magnified risk of spread in unvaccinated populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Family Characteristics , Hispanic or Latino , Humans
15.
West J Emerg Med ; 22(4): 842-850, 2021 Jun 29.
Article in English | MEDLINE | ID: covidwho-1554355

ABSTRACT

INTRODUCTION: Nationally, there has been more than a 40% decrease in Emergency Department (ED) patient volume during the coronavirus disease 2019 (Covid-19) crisis, with reports of decreases in presentations of time-sensitive acute illnesses. We analyzed ED clinical presentations in a Maryland/District of Columbia regional hospital system while health mitigation measures were instituted. METHODS: We conducted a retrospective observational cohort study of all adult ED patients presenting to five Johns Hopkins Health System (JHHS) hospitals comparing visits from March 16 through May 15, in 2019 and 2020. We analyzed de-identified demographic information, clinical conditions, and ICD-10 diagnosis codes for year-over-year comparisons. RESULTS: There were 36.7% fewer JHHS ED visits in 2020 compared to 2019 (43,088 vs. 27,293, P<.001). Patients 75+ had the greatest decline in visits (-44.00%, P<.001). Both genders had significant decreases in volume (-41.9%, P<.001 females vs -30.6%, P<.001 males). Influenza like illness (ILI) symptoms increased year-over-year including fever (640 to 1253, 95.8%, P<.001) and shortness of breath (2504 to 2726, 8.9%, P=.002). ICD-10 diagnoses for a number of time-sensitive illnesses decreased including deep vein thrombosis (101 to 39, -61%, P<.001), acute myocardial infarction (157 to 105, -33%, P=.002), gastrointestinal bleeding (290 to 179, -38.3%, P<.001), and strokes (284 to 234, -17.6%, P=0.03). CONCLUSION: ED visits declined significantly among JHHS hospitals despite offsetting increases in ILI complaints. Decreases in presentations of time-sensitive illnesses were of particular concern. Efforts should be taken to inform patients that EDs are safe, otherwise preventable morbidity and mortality will remain a problem.


Subject(s)
COVID-19 , Adult , Emergency Service, Hospital , Female , Government Programs , Humans , Male , Pandemics , Retrospective Studies
16.
Lancet Infect Dis ; 21(5): e111, 2021 05.
Article in English | MEDLINE | ID: covidwho-1510462
17.
Open Forum Infect Dis ; 8(9): ofab448, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1443088

ABSTRACT

BACKGROUND: Males experience increased severity of illness and mortality from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compared with females, but the mechanisms of male susceptibility are unclear. METHODS: We performed a retrospective cohort analysis of SARS-CoV-2 testing and admission data at 5 hospitals in the Maryland/Washington DC area. Using age-stratified logistic regression models, we quantified the impact of male sex on the risk of the composite outcome of severe disease or death (World Health Organization score 5-8) and tested the impact of demographics, comorbidities, health behaviors, and laboratory inflammatory markers on the sex effect. RESULTS: Among 213 175 SARS-CoV-2 tests, despite similar positivity rates, males in age strata between 18 and 74 years were more frequently hospitalized. For the 2626 hospitalized individuals, clinical inflammatory markers (interleukin-6, C-reactive protein, ferritin, absolute lymphocyte count, and neutrophil:lymphocyte ratio) were more favorable for females than males (P < .001). Among 18-49-year-olds, male sex carried a higher risk of severe outcomes, both early (odds ratio [OR], 3.01; 95% CI, 1.75 to 5.18) and at peak illness during hospitalization (OR, 2.58; 95% CI, 1.78 to 3.74). Despite multiple differences in demographics, presentation features, comorbidities, and health behaviors, these variables did not change the association of male sex with severe disease. Only clinical inflammatory marker values modified the sex effect, reducing the OR for severe outcomes in males aged 18-49 years to 1.81 (95% CI, 1.00 to 3.26) early and 1.39 (95% CI, 0.93 to 2.08) at peak illness. CONCLUSIONS: Higher inflammatory laboratory test values were associated with increased risk of severe coronavirus disease 2019 for males. A sex-specific inflammatory response to SARS-CoV-2 infection may underlie the sex differences in outcomes.

18.
Infect Control Hosp Epidemiol ; 43(5): 570-575, 2022 05.
Article in English | MEDLINE | ID: covidwho-1442666

ABSTRACT

OBJECTIVE: To evaluate the role of procalcitonin (PCT) results in antibiotic decisions for COVID-19 patients at hospital presentation. DESIGN, SETTING, AND PARTICIPANTS: Multicenter retrospective observational study of patients ≥18 years hospitalized due to COVID-19 at the Johns Hopkins Health system. Patients who were transferred from another facility with >24 hours stay and patients who died within 48 hours of hospitalization were excluded. METHODS: Elevated PCT values were determined based on each hospital's definition. Antibiotic therapy and PCT results were evaluated for patients with no evidence of bacterial community-acquired pneumonia (bCAP) and patients with confirmed, probable, or possible bCAP. The added value of PCT testing to clinical criteria in detecting bCAP was evaluated using receiving operating curve characteristics (ROC). RESULTS: Of 962 patients, 611 (64%) received a PCT test. ROC curves for clinical criteria and clinical criteria plus PCT test were similar (at 0.5 ng/mL and 0.25 ng/mL). By bCAP group, median initial PCT values were 0.58 ng/mL (interquartile range [IQR], 0.24-1.14), 0.23 ng/mL (IQR, 0.1-0.63), and 0.15 ng/mL (IQR, 0.09-0.35) for proven/probable, possible, and no bCAP groups, respectively. Among patients without bCAP, an elevated PCT level was associated with 1.8 additional days of CAP therapy (95% CI, 1.01-2.75; P < .01) compared to patients with a negative PCT result after adjusting for potential confounders. Duration of CAP therapy was similar between patients without a PCT test ordered and a low PCT level for no bCAP and possible bCAP groups. CONCLUSIONS: PCT results may be abnormal in COVID-19 patients without bCAP and may result in receipt of unnecessary antibiotics.


Subject(s)
COVID-19 Drug Treatment , Community-Acquired Infections , Pneumonia , Anti-Bacterial Agents/therapeutic use , Bacteria , Biomarkers , Community-Acquired Infections/diagnosis , Community-Acquired Infections/drug therapy , Community-Acquired Infections/microbiology , Humans , Pneumonia/drug therapy , Procalcitonin , ROC Curve
19.
J Infect Dis ; 224(6): 949-955, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1429240

ABSTRACT

BACKGROUND: Early in the coronavirus disease 2019 (COVID-19) pandemic, there was a concern over possible increase in antibiotic use due to coinfections among COVID-19 patients in the community. Here, we evaluate the changes in nationwide use of broad-spectrum antibiotics during the COVID-19 epidemic in South Korea. METHODS: We obtained national reimbursement data on the prescription of antibiotics, including penicillin with ß-lactamase inhibitors, cephalosporins, fluoroquinolones, and macrolides. We examined the number of antibiotic prescriptions compared with the previous 3 years in the same period from August to July. To quantify the impact of the COVID-19 epidemic on antibiotic use, we developed a regression model adjusting for changes of viral acute respiratory tract infections (ARTIs), which are an important factor driving antibiotic use. RESULTS: During the COVID-19 epidemic in South Korea, the broad-spectrum antibiotic use dropped by 15%-55% compared to the previous 3 years. Overall reduction in antibiotic use adjusting for ARTIs was estimated to be 14%-30%, with a larger impact in children. CONCLUSIONS: Our study found that broad-spectrum antibiotic use was substantially reduced during the COVID-19 epidemic in South Korea. This reduction can be in part due to reduced ARTIs as a result of stringent public health interventions including social distancing measures.


Subject(s)
Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/epidemiology , Public Health , Respiratory Tract Infections/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Antimicrobial Stewardship , Cephalosporins , Child , Child, Preschool , Female , Fluoroquinolones , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Macrolides , Male , Middle Aged , Pandemics , Penicillins , Republic of Korea/epidemiology , Respiratory Tract Infections/epidemiology , SARS-CoV-2 , Young Adult
20.
Infect Control Hosp Epidemiol ; 43(2): 156-166, 2022 02.
Article in English | MEDLINE | ID: covidwho-1243263

ABSTRACT

This SHEA white paper identifies knowledge gaps and challenges in healthcare epidemiology research related to coronavirus disease 2019 (COVID-19) with a focus on core principles of healthcare epidemiology. These gaps, revealed during the worst phases of the COVID-19 pandemic, are described in 10 sections: epidemiology, outbreak investigation, surveillance, isolation precaution practices, personal protective equipment (PPE), environmental contamination and disinfection, drug and supply shortages, antimicrobial stewardship, healthcare personnel (HCP) occupational safety, and return to work policies. Each section highlights three critical healthcare epidemiology research questions with detailed description provided in supplementary materials. This research agenda calls for translational studies from laboratory-based basic science research to well-designed, large-scale studies and health outcomes research. Research gaps and challenges related to nursing homes and social disparities are included. Collaborations across various disciplines, expertise and across diverse geographic locations will be critical.


Subject(s)
COVID-19 , Delivery of Health Care , Health Personnel , Humans , Pandemics , Personal Protective Equipment , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL